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Abstract

Background: The increasing threat of antimicrobial resistance combined with the paucity of new classes of
antibiotics represents a serious public health challenge. New treatment technologies could, in theory, have a
significant impact on the future use of traditional antibiotics, be it by facilitating rational and responsible use
or by product substitution in the existing antibiotics markets, including by reducing the incidence of bacterial
infections through preventative approaches. The aim of this paper is to assess the potential of alternative
technologies in reducing clinical use of and demand for antibiotics, and to briefly indicate which segments of
the antibiotics market that might be impacted by these technologies.

Methods: An initial mapping exercise to identify the alternative technologies was followed by a review of relevant
published and grey literature (n = 52). We also carried out stakeholder engagement activities by a round-table
discussion with infectious disease specialists and a multi-criteria decision analysis exercise with pharmaceutical
industry experts.

Results: Ten alternative technologies were identified and analyzed for their potential impact on the antibiotics
market. Of these, rapid point-of-care diagnostics, vaccines, fecal microbiota transplantation, and probiotics were
considered to have a “high” or “medium” potential impact over a 10-20 year horizon. Therapeutic antibodies,
antibiotic biomaterials, bacteriophages, antimicrobial nanoparticles, antimicrobial peptides, and anti-virulence
materials were rated as having “low” potential impact.

Conclusion: Despite the apparent potential of the most promising alternative technologies to reduce demand,
that reduction will likely only happen in limited segments of the antibiotics market or, in the case of preventing
community acquired streptococcal infections by vaccination, in a low-price generics market segment. Thus,
alternative technologies are not expected to represent any disincentive to antibiotics developers. Finally, it is
unlikely that alternative technologies will displace the need for new classes, and sub-classes, of antibiotics in the
short and medium terms.

Background
Antibiotic resistance is regarded as a major threat to
global public health, to the extent that medicine could
be on its way “back to the future” of a pre-antibiotic era
[1]. The issue is receiving high-level political attention,
with resolutions passed at events such as the G7 Health
Ministries summit [2] and the European Parliament [3],
the endorsement by the WHO of the AMR Global
Action Plan [4], and culminating at the United Nations

High-Level Meeting on AMR and the adoption of its
declaration by the UN General Assembly [5]. Likewise,
in academic circles the issue has been given wide-
spread attention, for instance by the 2015 Lancet
Series on Antimicrobials: Access and sustainable
effectiveness [6–11], the Chatham House Report on A
New Global Business Model for Antibiotics - Delinking
Revenues from Sales [12], as well as the work done by
both the Eastern European Group (ERG)[13] and IMS
Health [14] on assessing and estimating the parame-
ters relevant for incentivizing antibiotics R&D in the
face of the increasing rate of bacterial resistance to
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existing antibiotics. Several initiatives have been set up
to address the issue, such as the Transatlantic Task
Force on Antimicrobial Resistance (TATFAR) [15], the
UK Review on Antimicrobial Resistance (the AMR
Review) [16], which has already issued several reports
on different aspects of the antimicrobial resistance
challenge [17–22], and the Driving reinvestment in
research and development and responsible antibiotic
use (DRIVE-AB) project [23] funded by Europe’s
Innovative Medicines Initiative (IMI) [24].
The work presented in this paper is part of DRIVE-

AB, a consortium of 16 public sector partners and seven
pharmaceutical companies. DRIVE-AB is tasked with de-
fining responsible use of antibiotics, identifying the
antibiotic-related public health priorities, calculating the
societal value of having new antibiotics available for
these priorities, developing and costing new economic
models to promote antibiotic innovation and sustainable
use of the resulting, novel antibiotics.
The problem of bacterial resistance to existing antibi-

otics is exacerbated by declining numbers of multi-
national pharmaceutical companies that are currently
engaged in research and development of new antibiotics,
and concurrently, the limited number of new classes of
antibiotics in the R&D pipeline [25]. Use of any future
novel antibiotics is anticipated to be highly limited in
the first few years of launch to maintain their effective-
ness, leading to a poor commercial environment and
low returns on investment relative to other therapy
areas. In short, the market for antibiotics is not suffi-
ciently profitable to incentivize companies to maintain
an R&D pipeline that could meet the present and future
threat of antibiotic resistance.
Despite these challenges, antibacterial innovation

continues through new technologies such as bacterio-
phages (i.e., viruses that attack and kill specific
bacteria) or vaccines. One might wonder if these inno-
vations have the potential to replace antibiotic treat-
ment for certain pathogens if they should become
included in future treatment protocols. Several papers,
among them Allen et al. [26], Fernebro [27] and, re-
cently an AMR Review report [21] and a review paper
by Czaplewski et al. [28], have identified and discussed
such technologies, but without explicitly assessing
their potential impact on the antibiotics markets.
Thus, in this paper we assess the effect that different
technologies might have on use and demand for anti-
biotics in different segments of the antibiotics market,
taking the perspectives from industry, clinical practice
and health policy research. We also ask whether alter-
native technologies could potentially counter anti-
biotic resistance to the extent that they would reduce
the need for developing new antibiotics in the short
and medium terms.

Methods
Our research aimed at identifying a range of alternative
technologies that can either be used as substitutive treat-
ments to antibiotics, or that could dramatically impact
the size of a particular antibiotic market segment when
used together with antibiotics (so-called complementary
technologies). We consider substitutive technologies to
be any substance, product or technology not classified as
a traditional antibiotic that would perform the same task
as a traditional antibiotic, i.e. kill or inhibit the growth
of bacteria. We limited the study to human medicine
only. We assessed which segments of the antibiotics
market might be impacted by these technologies and to
what extent, within the next 10 – 20 years.
As already indicated, substitutive technologies can

potentially replace antibiotics in the treatment of infec-
tions [26, 27] and thereby reduce market size, while
complementary technologies, such as rapid point-of-care
diagnostics (RPOCD), have the potential both to reduce
clinical trial costs and facilitate responsible use [29] and
thereby can either increase or reduce sales of a specific
antibiotic.
Our research design comprises three independent

assessment procedures (described in detail below), pre-
ceded by an initial mapping exercise to identify the
technologies that would be included in the assess-
ments. The three procedures were a literature review, a
Multi-Criteria Decision Analysis (MCDA) with indus-
try experts, and a roundtable discussion with infectious
disease clinicians. Lastly, building on the output from
all these activities, we assessed which segments of the
antibiotics market that would likely be most affected by
each of the alternative technologies. The following par-
agraphs explain the initial mapping exercise and the
assessment processes in more detail.

Initial mapping exercise
The initial mapping exercise was an exploratory inter-
active process within the DRIVE-AB research team to
define the scope and to get a sense of the breadth of
coverage of technologies to different infections, with the
intermediate goal of identifying the technologies to be
included in the study. The research team is a multidis-
ciplinary group of professionals with expertise in drug
manufacturing, healthcare research, infectious diseases,
business modelling, health economics and pharmaceut-
ical policy. This exploratory process included consulting
known literature on an ad-hoc basis; a total of eleven
sources [30–39] were referenced, of which Fernebro’s re-
view paper [27] was used as a point of departure.
The inclusion criteria were that the technologies

should a) kill or inhibit the growth of bacteria (i.e. alter-
natives), or b) enhance the efficiency or effectiveness of
traditional antibiotics (i.e. complementary). It was also
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decided to only include technologies that have been sub-
ject to significant R&D efforts during the last 20 years;
thereby excluding obsolete therapies and purely embry-
onic technologies.

Literature review
The aim of the literature review was to review industry
pipelines to assess the potential of each technology to
deliver products meeting future clinical need. Thus, we
defined three criteria: 1) whether there are products in
the R&D pipelines for the selected technologies, 2)
whether they are in current clinical use, and 3) whether
they address identified clinical needs. Clinical needs were
defined as the 15 priority pathogens identified by the US
Center for Disease Control and Prevention as “urgent
threats” and “serious threats” (the three pathogens in the
“concerning threats“ category were excluded) [40]. If all
three criteria were met, the technology would be consid-
ered to have a high potential to deliver products meeting
future clinical needs, while if less than three criteria
were met the technology would be considered to have a
low potential.
In July 2015, two authors (RL and EN) searched the

PubMed and Google-Scholar databases using the terms
in Table 1 (page 15) as the search terms, e.g. “antibiotic
biomaterial” and “therapeutic antibodies”. The yields of
each search were in the range between the tens and sev-
eral hundred thousands. Primary research articles and
reviews containing information on the description,
strengths and/or weaknesses of the identified technolo-
gies were selected. The reference lists of the identified
papers were scanned to search for more eligible articles.
Given that the aim was to confirm R&D activities, clin-

ical practice and priority pathogen targeting, it was
decided to limit the reading to the point at which such
confirmation had been established, so that additional
reading would only add redundancy. For vaccines, this
was a particular case in point. A basic search for “vac-
cines AND antibiotics” in Google Scholar generates
around 200,000 results. Furthermore, as a well-
developed R&D space with many bacterial vaccines
being used in routine healthcare, information on the
bacterial vaccine pipeline was identified through a
2013 report issued by the Pharmaceutical Research
and Manufacturers of America [41]. Additional litera-
ture, i.e. three papers specifically on pneumococal vac-
cines [42–44] and a public report from the Product
Development Partnership PATH [45] were reviewed.
This was supplemented by a review of the clinical trial
database ClinicalTrials.gov at the point in time of the
research (mid-2015) to get an up-to-date picture on
the status of vaccines under development, as well as
by cross-checking against relevant company websites.
However, there was a lack of peer-reviewed publications

available on the specific products in the pipeline; perhaps
a consequence of the average phase of R&D (typically
Phase II) of the bacterial vaccines in the pipeline. For pro-
biotics, eight papers were needed to reach the information
saturation point. In total, 52 papers were reviewed.
The review identified 15 companies that had any of

the ten alternative technologies on the market, and an-
nual reports (n = 13) and press releases (n = 2) were ob-
tained and added to the review procedure. We also
searched ClinicalTrials.gov, for each alternative technol-
ogy, which yielded references to 148 relevant trials.

Multi-criteria decision analysis by industry experts
Following identification of the technologies, we under-
took a Multi-Criteria Decision Analysis (MCDA) involv-
ing a panel of industry experts to assess whether the
technologies have the potential to significantly reduce
the demand for traditional antibiotics in the next 10 –
20 years. MCDA involves breaking down an assessment
or decision problem into smaller and more manageable
questions by which it can be evaluated against a set of
predefined criteria. This is a particularly robust method
when dealing with complex and fragmented information,
such as in this context [46].
The entire research team participated in the design of

the MCDA process. In practice, this meant that both the
academic partners (who reviewed and analyzed the final
MCDA data) and industry partners (who either submit-
ted scores individually or as part of a wider group re-
sponse) discussed and jointly agreed upfront on the
most relevant criteria and on the scoring method [46].
This process was re-stated in an email sent to partici-
pants, alongside an MS Excel file to collect scores.
In this case, we broke down the assessment problem

into three questions for each selected technology:

1) What is the estimated impact on the demand for
antibiotics? Score of 1 means the technology will
have little impact on antibiotics demand while score
of 3 means the technology will greatly reduce
demand for antibiotics.

2) What is the development cost? Score of 1 means the
technology will be very costly to develop, while a
score of 3 means the technology will have a
relatively low cost of development, as compared to
traditional antibiotics.

3) What is the expected time for the technology to
reach the market? Score of 1 means the technology
will be very slow to market, i.e., more than 10 years,
while a score of 3 means the technology will be on
the market soon, i.e., less than five years.

The three criteria were given equal weights, and it is
evident that the two latter questions somehow modify
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the assessment provided in the first question. The ex-
perts also used a 1-3 scoring system to indicate how
confident they were in their assessment of each of the
ten technologies (please see summary of results in
Table 2 on page 17).
The experts who contributed scores were recruited

from among the DRIVE-AB consortium pharmaceutical
industry partners from the European Federation of
Pharmaceutical Industries and Associations (EFPIA).
Five major pharmaceutical companies were represented
(Roche, AstraZeneca, GSK, Pfizer and Astellas).
To avoid potential bias, the three members of the re-

search team who were also industry expert participants
in this MCDA assessment process did not have access to
the outputs of the literature review and clinician round-
table before they participated in the MCDA assessment.
Finally, the academic partner responsible for the analysis
summarized the scores and provided a summary analysis
to the research team. The research team reviewed the
summary analysis and signed off the final result of the
MCDA process.

Table 1 Alternative technologies discussed in this paper

Antibiotic biomaterials
Antibiotic biomaterials are substances that are added to or form part
of implants, prostheses, bandages or other medical devices in order to
reduce the risk of bacterial infection. The working principle is that the
biomaterial delivers an antibiotic drug over a prolonged time directly
at the local site that is a risk of bacterial invasion and infection. There
is inconclusive evidence on appropriate and optimal clinical use of this
technology, and lack of standardized treatment protocols [85].

Antimicrobial nanoparticles
Nanoparticles are a drug delivery method that could be applicable for
antibiotics. There are multiple working principles, including to improve
the solubility of poorly water-soluble drugs; to prolong the half-life of
drug systemic circulation by reducing immunogenicity; to release drugs
at a sustained rate or in an environmentally responsive manner and thus
lowers the frequency of administration; to deliver drugs in a target
manner to minimize systemic side effects; and to deliver two or more
drugs simultaneously for combination therapy to generate a synergistic
effect and suppress drug resistance. There seems to be no nanoparticle
based antibiotic therapies in clinical use [37, 106].

Antimicrobial peptides
These molecules are produced as part of the innate (non-specific)
immune system which confers defense against infections without
prior exposure to foreign pathogens. The working principle is that the
peptides would disrupt cell membranes, with a broad spectrum effect
on a variety of microbes, including bacteria. The exact mechanism of
action is still unclear. Hence, the potential clinical utility of this
technology is yet to be determined [72].

Anti-virulence materials
Therapeutic agents which target the mechanisms and processes
through which microbes cause infection or a pathogenic cascade.
In contrast to traditional antibiotics, the working principle is not to
kill the pathogen, but to inhibit its capacity to cause illness. In other
words, anti-virulence materials could prevent specific bacteria from
adhering to human tissue, or inhibit bacterial quorum sensing or
secretion of toxins, or make specific bacteria more sensitive to traditional
antibiotics. Few, if any, antibacterial candidates have moved beyond animal
model studies [107].

Bacteriophages (including lysins)
Bacteriophages are a type of virus that infects bacteria. The working
principle of using bacteriophages as a therapeutic agent is that the
phages would infect a pathogenic bacterial cell, whereupon they would
replicate to synthesize genome and structural proteins into progeny
virions inside the host cell. Finally the new phages would escape by
rupturing the bacterial cell wall which results in the death of the cell.
The escaping phages would in turn be capable of infecting other
bacterial cells. Phages are highly bacteria-specific. This technology is in
clinical use in some Eastern European countries, including Georgia,
Poland, and Russia [70, 71].

Fecal microbiota transplantation (FMT)
FMT involves transplantation of feces from healthy donors into the
gut of individuals with a gastrointestinal infection or condition. The
working principle is that the bacteria from the donor would restore
the microbiological environment in the patient’s intestines, thus
eliminating the pathogenic bacteria. Clinical trials have demonstrated
effect on Clostridium difficile infection, but standardized clinical protocols
have yet to be developed [65].

Probiotics
Probiotics are live microorganisms which, when administered in
adequate amounts, confer a health benefit on the host. The working
principle is similar to that of FMT in that the ingested microorganisms
improve the function of the intestinal flora of the patient. Clinical
trials studying the effect of probiotics against a variety of conditions
have been carried out, including bacterial infections, with diverging
results. As with FMT, standardized clinical protocols are not yet in
widespread use [108]

Table 1 Alternative technologies discussed in this paper
(Continued)

Rapid point-of-care diagnostics
RPOCD are analytical testing performed outside the central laboratory,
and can be based on a range of technologies, including antigen based
tests, whole genome sequencing, real-time polymerase chain reaction,
probe-based assays, bioluminescence real-time amplification, and
microarray or micropump technologies. In a clinical perspective, the
working principle is to use a device or devices that can be easily transported
to the vicinity of the patient, with the benefit of rapid diagnosis and
concurrent onset of appropriate treatment. In outpatient settings,
RPOCD could provide access to diagnostics in resource constrained
settings, or instant diagnosis could save the patient the delay caused
by having to pay the clinic an additional visit to receive test results
and the appropriate treatment [52].

Vaccines
A vaccine is a biological preparation that improves immunity to a
particular microorganism. A vaccine typically contains an agent that
resembles a disease-causing microorganism, and is often made from
weakened or killed forms of the microbe, its toxins or one of its
surface proteins. The working principle is to stimulate the body's
immune system to recognize the agent as foreign, destroy it, and
"remember" it, so that the immune system can more easily recognize
and destroy any of these microorganisms that it later encounters.
Vaccines against a range of different viral and bacterial diseases are in
widespread use [30].

Therapeutic antibodies
Antibodies are synthesized in the human body by the plasma cells as a
response to an invading foreign agent. Monoclonal antibodies can be
produced in cell culture, but antibodies can also be produced in vivo by
extraction from blood material, for instance. The working principle of
therapeutic antibodies is that when injected into the human body, the
antibodies will bind to specific locations on specific microbial cells or
proteins, thus facilitating the natural immune system in eliminating that
cell or protein. Anti-microbial antibodies fall in two broad categories;
those that bind directly to the pathogen, and those that aim to neutralize
toxins or other virulence factors. There seems to be no antibodies based
antibiotic therapies in clinical use [109].
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Clinician roundtable discussion
The third assessment procedure was an expert panel
roundtable discussion involving a group of three infec-
tious disease physicians to assess the potential clinical
utility of the alternative technologies and the potential of
each of the technologies to significantly reduce or other-
wise impact on the use of traditional antibiotics in rou-
tine clinical practice in priority disease areas. Apart from
their infectious diseases specialties, the three panelists
together held specific expertise in conducting clinical tri-
als, inter alia on both probiotics and FMT, and they are
all based at the University Hospitals of Geneva (UHG)
in Switzerland. UHG is one of the participating entities
in the DRIVE-AB project, but none of the three doctors
are a part of the research team for this work stream. The
aim of the roundtable discussion was to assess the ten
technologies from a clinical perspective in terms of fu-
ture (potential) clinical utility, thus triangulating the re-
sults from the literature review and the MCDA exercise
The process took the form of focus group discussions

[47] and expert knowledge elicitation [48]. This roundta-
ble discussion research design aimed at facilitating on
site generation and exchange of opinions in a critical
discussion.
The panelists were forwarded a list of eleven selected

alternative technologies (FMT and microbiome thera-
peutics were presented as two separate categories on this
occasion), and a guide suggesting the questions to be
addressed. One member of our research team (RL) pro-
vided a detailed briefing on the basic objective, ap-
proach, and what input was needed, and subsequently

moderated the discussion while other team members lis-
tened in remotely. Although there was no request made
to reach consensus, the panelists’ opinions tended to
converge on most of the subject matter.
The panel carried out an assessment of the future po-

tential clinical utility of the alternative technologies,
based on whether the technology is likely to enter rou-
tine clinical practice in the next 10 – 20 years to an ex-
tent that will significantly reduce or otherwise impact
the use of traditional antibiotics. The roundtable was
also tasked with determining whether the technology
can be a substitute or a complement to antibiotics,
whether the technology has a broad or narrow bacterial
spectrum potential, and whether the use of the alterna-
tive technology depends on the availability of appropri-
ate diagnostics.

Similar criterion
Our design includes the redundancy of using the criter-
ion of “demand impact” in the MCDA and the criterion
“impact on use” by the clinicians roundtable, where the
distinction between “demand” and “use” is somewhat
subtle. Admittedly, an alternative technology may impact
the antibiotics markets without having to target clinical
needs; for instance, in theory a probiotic treatment, if
effective, could outcompete a perfectly effective antibi-
otics based on lower price. Nevertheless, we are assum-
ing that for the most part clinical need is a prerequisite
for commercial viability, although not all clinical needs
are expressed as effective demand.

Table 2 Overview of assessments of technologies

Assessment process: Literature
review

Industry expert
MCDA

Clinicians roundtable
discussion

Summary
score

Assessment parameter: Potential to deliver products Potential to reduce demand Potential to impact
on clinical use

Overall
potential

Assessment criteria,
or score:

In clinical
use

Products in
pipeline

Targets priority pathogen
(CDC list)

Score (max 27, min
6)

Assessment* May reduce
antibiotics demand

Rapid point-of-care
diagnostics

Yes Yes Yes 20.0 High Yes High

Vaccines Yes Yes Yes 14.8 High Yes High

Probiotics No Yes Yes 15.4 High Yes Medium

Fecal microbiota
transplantation

No Yes Yes 15.0 High Yes Medium

Therapeutic antibodies Yes Yes Yes 15.1 High No Low

Antimicrobial peptides Yes Yes Yes 11.4 Low No Low

Antibiotic biomaterials Yes No n.a. 12.4 Low Yes Low

Antimicrobial nanoparticles Yes Yes No 8.0 Low No Low

Anti-virulence materials No No n.a. 12.0 Low No consensus Low

Bacteriophages (and lysins) No Yes Yes 8.8 Low No Low

Legend: “Yes” means a response in the affirmative for the criterion in any given the column heading, whereas “No” means that the criterion was not fulfilled
*High potential technologies are those with a total score greater than the median of the total scores of the entire data set (13.4), where total score = (Time +
Demand + Cost) x Confidence
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Results
Identified alternative technologies
Table 1 lists the ten alternative technologies that were
selected for assessment for this paper by the initial map-
ping exercise. RPOCD and some anti-virulence materials
are complementary, while the remaining eight technolo-
gies are mainly substitutive.

Synthesis of assessments of alternative technologies
The results of the literature review, MCDA-round and
the clinical roundtable are given in Table 2. The sum-
mary score indicates the potential of each technology in
bringing products to the market that are adopted in clin-
ical use to the degree that it has an impact on antibiotics
demand. Vaccines and diagnostics are rated as overall
“high potential”, having met all basic criteria, and FMT
and probiotics are rated “medium potential”. The
remaining six technologies were rated as “low potential”.
First, we would remark that the global USD 40 billion

antibiotics market is in reality a patchwork of fragmen-
ted and partially overlapping markets, defined and
delimited by a multitude of different pathogens and dis-
eases, commonly with different treatment protocols and
guidelines in different countries and regions. Resistance
patterns, and thus antibiotic use patterns, also vary geo-
graphically. In the following, it will be demonstrated that
certain markets stand to be affected more than others by
the different substitutive and complementary technolo-
gies. The impact on the antibiotics markets could also
be analyzed in terms of whether the technologies affect
the use of first, second or third-line therapies and by ex-
tension, their impact on generics and novel antibiotics,
respectively.
The following paragraphs present a synthesis of the

assessments of how each of the ten technologies could
be expected to impact the different market segments
for antibiotics. The focus is on the four “high” and
“medium” potential technologies (RPOCD, FMT, pro-
biotics and vaccines). We found it to be outside of the
scope of this work, and possibly simply overly specula-
tive, to model the future impact of prospective alter-
native technologies on future antibiotics markets in
quantitative terms. Hence, the following assessment is
made in terms of qualitative denominators, such as
“widespread use” and “limited impact”.

Rapid point-of-care diagnostics (RPOCD)
Despite being “just” complementary and not substitutive,
based on the results of the MCDA and clinician’s round-
table, RPOCD is the technology expected to have the
most profound effect on antibiotics demand. Diagnostics
can be developed at relatively low cost, and could be
available for routine use in the next five years, or less.
However, the extent to which RPOCD has a sustained

impact on antibiotic demand is unclear, and in practice
may ultimately reflect the level of specificity of test avail-
able, and its ability to effectively integrate into health
systems for routine use.
First, widespread use of rapid diagnostic tests in

community settings could reduce inappropriate and un-
necessary use of antibiotics against non-bacterial infec-
tions. This would reduce the demand for many broad-
spectrum antibiotics, but to a varying degree depending
on the normal consumption patterns in each market.
Second, RPOCD could be an effective tool to support
the diagnosis of severe infections. However, despite the
utility of diagnostics in improving clinical practice in
hospital settings, empiric treatment is expected to re-
main a widespread approach, and diagnostics are not
expected to significantly reduce the demand for antibi-
otics in any specific disease area. Rather, RPOCD are
expected to impact antibiotic markets by allowing more
targeted therapy – not by reducing total antibiotics
demand but by reducing demand of broader spectrum
antibiotics to be replaced by more narrow spectrum
antibiotics depending on microbiologic environment
[49–53].
The MCDA pointed out low development costs and

short time to market as factors that could increase the
impact of RPOCD on antibiotic stewardship, whereas
the clinicians pointed out that there remain basic imple-
mentation challenges with RPOCD; diagnostics can be
costly in clinical use, especially in a context where clini-
cians may not utilize the available diagnostics results in
making clinical decisions, and there could be disagree-
ments within hospitals on the deployment of resources;
microbiologists may tend to prefer deployment of testing
in the laboratory instead of remotely within an Intensive
Care Unit, for instance.
It should be added that the wider benefit of diagnos-

tics could potentially reduce the costs of running clin-
ical trials for new antibiotics. Moreover, very accurate
diagnostic tests would be needed for some other tech-
nologies considered in this paper, such as bacterio-
phages. Cut short, diagnostics are of great utility in
improving community-based treatment, facilitating ra-
tional prescribing and reducing R&D costs, but will
likely not reduce demand for antibiotics in hospital
settings.

Vaccines
Vaccines, rated as “high potential”, are already a well
understood and widely used technology, and both large
pharmaceutical multinationals and small to medium-
sized companies are active in this space. The findings of
the MCDA suggest that vaccines could have a medium
impact on antibiotic demand, are of medium cost to
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develop, and would take a medium time overall, of
around ten years, to become available in the market.
Priority pathogens currently targeted by vaccine R&D

pipelines are Neisseria gonorrhea, Acinetobacter, Escheri-
chia coli, Staphylococcus aureus, Pseudomonas aeruginosa
and Clostridium difficile. Generally, there remain some
issues to be resolved in terms of identifying and immuniz-
ing the target populations, in particular for S. aureus,
given the challenge of defining any definite risk groups for
this pathogen. A vaccine against C. difficile would mainly
reduce the demand for vancomycin and metronidazole,
while the current toolbox for treating different P. aerugi-
nosa infections encompasses several handfuls of different
antibiotics.
The MCDA experts provided diverging scores on vac-

cines, which may partly reflect the diverse potential of
vaccines. Some vaccines could be widely adopted to ad-
dress a narrow segment of the market, leading to a
small overall impact on antibiotic demand, for instance
by targeting small, high-risk populations such as those
entering hospital for elective surgery and those living in
long-term residential care. This reflects the expected
market of bacterial vaccines in the pipeline. In contrast,
pneumococcal vaccine, which is the focus of our litera-
ture review of vaccines, has been rolled out globally in
childhood immunization programs, including in low-
income countries, and has had a significant impact on
bacterial pneumonia caused by Streptococcus pneumo-
nia [42–44].
Furthermore, major questions remain about how new

bacterial vaccines can be deployed for small populations
in a cost-effective way. This hints at a need to consider
alternative reimbursement mechanisms for vaccines also
to create further R&D incentives [22]. Overall, even
though vaccines may be widely adopted, they would
likely impact on a narrow segment of the antibiotics
market, leading to a small overall impact on antibiotic
demand. Vaccines will not eliminate the need for new
antibiotics, given that it is impossible or unfeasible to
successfully cover all risk groups with this preventive
measure.

Probiotics
The overall rating of probiotics was “medium potential”.
This rating reflects this technology fulfilling all criteria
outline in Table 2, with the exception of existing clinical
use. The evidence base from the literature is mixed, with
diverging opinions on the efficacy of probiotics to treat
bacterial infections [34, 54–60]. The MCDA results and
the clinician roundtable generated diverging views, with
the clinical view that there is a lot of untapped potential
in probiotics, in particular for gastrointestinal infections.
The pathogen target for most probiotics R&D and

clinical protocols is C. difficile, but probiotics also are

used to prevent and treat antibiotic associated diarrhea,
ulcerative colitis and Crohn’s disease. As yet, there re-
mains a lack of robust evidence for the deployment of
probiotics. This is also in the context of strong clinical
evidence for alternative approaches, e.g. FMT, for treat-
ing C. difficile. While in the MCDA analysis probiotics
scored high on time to market and cost, but low on im-
pact on demand, the clinicians had comparably high
hopes for future probiotic therapies, leading to a con-
trasting viewpoint on the potential impact on demand.
The literature review shows that additional R&D tar-

gets for probiotics are decolonization or inhibition of
colonization of Klebsiella pneumoniae and Streptococcus
pneumoniae [34, 54–60]. Thus, given the low cost of
probiotics, widespread application could have an impact
on the generic antibiotics used to treat community
acquired pneumonia [61]. All in all, the total impact on
antibiotics markets is mixed, at least in the short or
medium-term, although the longer-term potential of
probiotics could be more pronounced for specific prior-
ity pathogens.

Fecal microbiota transplantation
Although FMT scored negatively on the criterion “In
clinical use” in the literature review, one should bear in
mind that several recent clinical studies show strong
efficacy for C. difficile infections [62, 63]. Ongoing re-
search targets a number of other bacteria and conditions
other than gastrointestinal [62, 64–66]. In the MCDA,
this technology scored high on short time to market,
average on cost, and low on impact on antibiotics de-
mand. The clinicians pointed out major issues for FMT
in terms of designing an operational approach for FMT
treatment in a local hospital, e.g., creating donor banks,
training staff to manage the banks and to deliver the
treatment efficiently and effectively. In many contexts,
specifically low income countries and other environ-
ments with weak health systems, the likelihood of being
able to maintain donor banks is low.
More broadly, microbiome therapeutics were viewed

by clinicians as a high potential area, with potential to
significantly reduce antibiotic use over time through
“secondary prevention“, which could also reduce carriage
of resistant pathogens through decolonization of patho-
gens. Overall however, given the narrow application for
this technology, the impact on antibiotics markets will
likely be very limited.

The remaining, “low potential” technologies
The following six technologies were regarded as having
a low potential to impact on antibiotics demand, mainly
due to their limited clinical utility. Therapeutic anti-
bodies have been successfully applied in cancer treat-
ment, and raxibacumab is approved for the treatment of
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patients with inhalational anthrax in combination with
appropriate antibacterial drugs. Historically, serum
therapy has been used to treat viral and bacterial infec-
tions. The main priority pathogen targets are C. difficile
and S. aureus. The main limitation is that this technol-
ogy is expensive to develop, and given the high specifi-
city of this technology and the concurrent small patient
populations, its impact on antibiotics markets will likely
be very limited [67–69].
Bacteriophages are not currently in use, except for in

the few national territories mentioned in Table 1, and
the main obstacles to this technology are a lack of a
clear regulatory framework, possible lack of patentability,
and that the specificity of bacteriophages may require
development of unique cocktails for each patient, which
in turn implies a dependency on a good diagnostic test
to support the selection of treatment “cocktail” [70, 71].
The MCDA analysis generated a range of views on

the likely impact of bacteriophages on antibiotic de-
mand, however even where medium to high impact
may be possible, this would be predicated on access to
the necessary tools to complement bacteriophages (e.g.
RPOCD), and the operational capacity to develop phage
cocktails. There was general consensus from the
MCDA that bacteriophages appear to be relatively
expensive to develop (and to deploy on a case-by-case
basis), and basic market barriers surrounding regulation
suggest that it will take a number of years before this
technology is more viable for wide scale deployment.
Existing barriers in clinical trial guidelines, a lack of
strong efficacy data, and basic operational concerns led
the clinicians to remain sceptical about whether bacte-
riophages could be offered on an empirical basis to suf-
ficiently impact antibiotic demand.
Use of Antimicrobial peptides will likely be limited due

to their toxicity profile and cost [72–76], although there
are numerous attributes of peptides, including a broad
application potential and the potential to deploy pep-
tides as a combination therapy. Antimicrobial nanoparti-
cles have led to enhanced antibiotic formulations rather
than their replacement [77–83].
Antibiotic biomaterials have a very narrow scope for ap-

plication as they are used mainly as wound dressings and as
part of implants [84–88]. The literature review identified
no anti-virulence materials in the R&D pipeline [89–93].
Additionally, this technology is complimentary to antibi-
otics, and would have little impact on antibiotics demand.

Discussion
A recent paper [94] that was published after our re-
search activities were finalized concludes that many al-
ternative technologies are facing challenges related to
several factors: small markets due to their narrow (even
strain specific) spectrums; the need for simultaneous use

of both antibiotics and diagnostics; uncertainty as to fu-
ture rate of resistance development; and the fact that
many of them are still far from entering clinical use.
Similarly, in another recent review paper on alterna-

tives to antibiotics [28], the authors conclude that anti-
bodies, probiotics and vaccines are most advanced, and
that such therapies targeting C. difficile, P. aeruginosa,
S. aureus will likely enter the market. Yet, traditional
antibiotics will still be needed as the major antibacterial
defense, not least because many alternative technolo-
gies have a much narrower or more pathogen specific
bacterial spectrum. The authors of this paper also
pointed out that in order to have a significant clinical
impact, alternative technologies would need increased
funding in the order of US$ 2.1 billion over the next
ten years.
Another paper published while writing up our research

results is the AMR Review report on “Vaccines and
alternative approaches” [21]. As indicated by the title,
vaccines were identified as the most promising technol-
ogy for reducing antibiotics consumption, but new
demand-oriented reward mechanisms are recommended
to boost the pipelines of bacteriophages (and lysins),
antibodies, probiotics, peptides and immune stimulating
technologies. The report points at narrow bacterial
spectrum and the novelty of the products as seen from
regulators’ and clinicians’ point of view as potential ob-
stacles to development and clinical implementation. In
our view, although drug regulations were not cited as
barriers to development of alternative technologies, on-
going work for developing new regulatory pathways for
antibacterial drugs [95] is highly welcome.
Both these contributions, while complementary to

our work in many respects, align with some of our
main results. Most strikingly, they rank vaccines and
probiotics (including FMT) as the most promising of
the alternative technologies, while simultaneously pointing
out that the narrow bacterial spectrums of many of the al-
ternative technologies will likely limit their impact. Diag-
nostics were not covered by the Czaplewski et al. paper,
but the fact that the AMR Review dedicated a separate
report to diagnostics [18] speaks for the importance
assigned to this technology by that commission.

Limitations of this study
The extent to which alternative technologies can impact
on the use of and demand for antibiotics depends on a
host of factors, including, but not limited to, the avail-
ability of knowledge from basic science, the supply of
competent labor, investment decisions in private com-
panies, the existence of appropriate regulatory pathways,
reimbursement policies and decisions, inclusion in clin-
ical guidelines, and ultimately, the extent to which they
are efficiently manufactured and distributed and actually
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applied in clinical practice [96, 97]. Several barriers to
introduction of new technology have been identified in
the literature; conservative mentality and professional
resistance [98], innovation-unfriendly accounting sys-
tems (e.g. DRGs; diagnosis-related group) and complex
purchasing procedures [99, 100], and barriers within sin-
gle hospitals [101], such as lack of motivated champions,
power shifts from clinicians to administrators [102–104]
or limited educational materials supporting implemen-
tation [105]. It was considered beyond the scope of this
study to further identify and analyze barriers and bot-
tlenecks to introduce and implement the alternative
technologies.
One potential limitation is that we are limited to dis-

cussing technologies that have been published or that
were familiar to the members of the research team and
the participating industry and clinical experts. However,
the broad composition of the expert panels and the tri-
angulation of methods served to diminish this potential
bias. Throughout the process of developing this paper
no technologies other than the ten (Table 1) were identi-
fied that met our inclusion criteria.
Another potential limitation was the make-up of the

panels. The panels could have represented a broader set
of stakeholders, such as health technology assessment
agencies (HTAs) or other payers. HTA agencies and
payers have an indirect impact on the antibiotic market
through reimbursement decisions. However, the purpose
of the clinicians’ expert roundtable discussion and the
industry representatives’ MCDA was specifically to
utilize the specific expertise held by these two stake-
holder groups on the demand and the supply side of
antibiotic markets, respectively. We believe the triangu-
lation of the results of these two processes with the lit-
erature review reduced the risk of stakeholder bias in
our final results.

Conclusion
Despite expectations of widespread use of some the com-
plementary and substitutive alternative technologies,
specifically the “high potential” vaccines and diagnostics
and the “medium potential” FMT and probiotics, the im-
pact on the demand for antibiotics in the next 10 to
20 years can be expected to be limited. This is mainly
due to the limited range of pathogen targets of the tech-
nologies – three of the four “high” or “medium” poten-
tial technologies have C. difficile as their main target
pathogen – and the relatively small patient populations
associated with these pathogens. In the one case of a
large patient population – community acquired strepto-
coccal infections – the antibiotic market segment likely
to be impacted is that for low-priced generics.
None of the technologies should be expected to make

any antibiotics redundant, as growing resistance will

likely continue to reduce the effectiveness of our current
drugs. Alternative technologies, despite all their potential
to improve therapies and treatment protocols, will not
displace the need for new classes, and sub-classes, of an-
tibiotics. Even though alternative technologies do not
contribute to undermining the commercial viability of
such novel antibiotics in the near future, new eco-
nomic models to incentivize increased antibiotics
innovation are needed, as mandated to the DRIVE-AB
project to propose. Additionally, alternative technolo-
gies are needed and their R&D should be encouraged
and supported, as recommended by both the AMR
Review [21], Czaplewski et al. [28], and Hauser et al.
[94], since they help combat antibiotic resistance and fa-
cilitate sustainable use of existing and new antibiotics.
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